APPENDIX C

HYDROLOGY STUDY

ONSITE HYDROLOGY REPORT

FOR

LONG BEACH SPORTS PARK Long Beach, California

Prepared By:

PBS

18022 Cowan, Suite 100A

Irvine, California 92614
(949) 660-8600

June 19, 2003

Revised August 10, 2004

TABLE OF CONTENTS

SEC	<u>CTION</u>		<u>PAGE</u>
Intro	duction		1
Hydr	ology		1
Exist	ing Conditions		1
Prop	osed Conditions	· · · · · · · · · · · · · · · · · · ·	2
Storr	n Water Management Plan	·····	2
Dry '	Weather Flow	······	2
<u>APP</u>	<u>ENDICES</u>		
Α.	Existing Hydrology Calculations		
B.	Proposed Hydrology Calculations		
C	Deference Materials		

Long Beach Sports Park

ONSITE HYDROLOGY REPORT

Introduction

This report provides onsite hydrology calculations to support the design of storm drain systems to serve the Long Beach Sports Park development in the City of Long Beach. The development is generally bounded on the north by Spring Street, on the east by Orange Avenue, on the west by California Avenue and on the south by two existing cemetery sites. The improvement site covers about 55 acres. The location is shown on the vicinity map.

This report only covers onsite hydrology. Offsite hydrology is per an LACDPW memo dated April 30, 1992, from Richard Smith to Donald Nichols. A copy of this memo is included in Appendix C.

Hydrology

Hydrology calculations were based on the Modified Rational Method as presented in the Los Angeles County Department of Public Works "Hydrology/Sedimentation Manual", dated December 1991, and "Addendum to the 1991 Hydrology/Sedimentation Manual", dated June 2002. The calculations were performed using the Time of Concentration Calculator developed by Los Angeles County Department of Public Works Water Resources Division.

Since the proposed Long Beach Sports Park site is to contain a detention basin, calculations were performed for a 50-year, 25-year and 10-year storm frequencies consistent with the LACDPW manual using MORA software. The 5-year and 2-year discharges were determined using factors 0.584 and 0.387 respectively as provided by LACDPW. As shown on the hydrologic soils map, the majority of the site falls within Soil Classification Area 013 with a couple areas to the south in Area 014. As shown on the isohyet map, the 50-Year 24-Hour Isohyet is 5.2.

Existing Conditions

The site presently drains, primarily by surface flow, to seven separate sump areas (none of which are picked up by a storm drain) and an existing detention basin located onsite. A portion of the eastern part of the site drains to Orange Avenue (Sub areas 10A and 14A), while a portion of the western part of the site drains to California Avenue (Sub area 6A and 11A). Presently, there is a 78-inch storm drain (Walnut-Spring Drain, Unit 1) and a 69-inch storm drain (LBWD Drawing No. B-2035a and c) that gather storm flows from 207 acres offsite and convey the total flow of 460 cfs to an existing 108-inch storm drain (Walnut-Spring Drain, Unit 2) that runs through the northern half of the site and

discharges into the detention basin. All flows up to 100 cfs drain out of the detention basin through an existing 54-inch storm drain (LACFCD Project No. 5109). The remaining flows, combined with direct rainfall over the basin (Sub area 8A) and flow from the east (Sub area 9A) total 473 cfs with an equivalent storage volume of 36.07 acre-feet. All flows in excess of 100 cfs are stored in the basin and/or onsite until capacity in the downstream storm drain (Project No. 5109) is available. Detailed existing hydrology calculations are included in Appendix A.

Proposed Conditions

Due to grading operations, the existing storm drains will be removed and a new 108-inch storm drain will be constructed downstream of Spring Street to carry and discharge the existing pipe flow of 460 cfs into a proposed 0.08-acre stilling basin area with a floor elevation of 44.5. The stilling basin will incorporate a 51-inch storm drain outlet with an invert elevation of 48.98. The storage volume in the stilling basin below the outlet is 0.52 acre-feet. The total storage volume of the stilling basin up to the access road is 1.66 acre-feet. The total flow discharged out of the stilling basin by the 51-inch storm drain will be 100 cfs. Flows in excess of 100 cfs will spill out of the stilling basin and into the soccer fields that act as a detention basin. The soccer field detention basin will have a total volume of 42.5 acre-feet.

The proposed site was broken into eleven drainage areas. Sub areas 1A through 9A are collected upstream of the proposed desilting basin. Areas 10A and 11A are collected into the 51-inch storm drain downstream of the desilting basin. The 51-inch storm drain discharges into the existing 54-inch RCP at the southwest corner of the site. Detailed hydrology calculations are included in Appendix B.

Storm Water Management Plan

As required by the Standard Urban Storm Water Mitigation Plan (SUSMP) for Los Angeles County and the City of Long Beach Municipal Code Chapter 18.95, developments that will result in 100,000 square feet or more of impermeable surface, including parking lots, are subject to specific source control and treatment control best management practice (BMP) requirements. The project shall incorporate BMPs applicable to the site into its description and design that address pollutants of concern such as trash and petroleum hydrocarbons.

Dry Weather Flow

Dry weather flow is defined as surface water runoff from non-storm events (excess landscape irrigation, washing off of sidewalks, street cleaning activities, etc.). All dry weather flows generated onsite are expected to be contained onsite. Runoff from all significant hardscape areas will be picked up by the proposed onsite storm drain system and discharged into the 108" storm drain upstream of the stilling basin. The stilling basin has a capacity of 0.52 acre-feet below the outlet elevation. This capacity will allow the dry weather flows to be contained onsite and percolate into the ground. Site areas

downstream of the stilling basin are predominately soccer fields or golf oriented areas. By controlling irrigation activities dry weather flows will be eliminated from these areas.

APPENDIX A

EXISTING HYDROLOGY CALCULATIONS

VICINITY MAP N.T.S.

LONG BEACH SPORTS PARK PREPARED BY:

- Planning
 Surveying
 Construction Services

Irvine, California 92614 Phone: 949/660-8600 Fox: 949/440-8183

18022 Cowan., Suite 100Å

APPENDIX E: Proportion Impervious Values

<u>Residential</u>	• •	
Single-Family		0.418
Two-Unit		0.418
Three-Unit		0.682
Four-Unit		0.819
Five-Unit		0.855
Commercial		·
Stores, Office Buildings, Manufacturing Outlets		0.909
Shopping Centers (Regional), Restaurants, Service Shops,		
Auto Equipment, Parking Lots		0.946
Shopping Centers (Neighborhood), Motels, Hotels, Kennels,	n en	
Professional Buildings, Banks, Service Stations		0.958
Supermarkets		0.976
Department Stores		0.985
<u>Industrial</u>		
Mineral Processing		0.473
Open Storage		0.655
Motion Picture, Radio, Television		0.819
Manufacturing, Warehousing, Storage, Parking		0.909
Food Processing Plants, Lumber Yards		
Institutional Property		· .
Colleges, Universities		0.473
Homes for the Aged	•	0.682
Hospitals, Cemeteries, Mausoleums, Mortuaries		0.744
Churches, Schools		0.819
<u>Undeveloped Property</u>		
Dural		0.01
Rural		

		LONG BEAC	H SPOR	TS COMP	LEX HYD	ROLOGY			
				ING FLO					
AREA	L	AND COVER	%IMP	%IMP	2-YR	5-YR	10-YR	25-YR	50-YR
4.0	60%	Parking Lot	0.946	0.572	2	3	5	7	9
1a	40%	Rural	0.01						
2a	100%	Rural	0.01	0.010	.0	1	2	3	3
	10%	Parking Lot	0.946						
3a	40%	Warehousing	0.909	0.463	5	13	18	28	35
<u> </u>	50%	Rural	0.01						
4a	80%	Manufacturing	0.909	0.729	1	2	2	3	4
4a	20%	Rural	0.01	*-					
5a	100%	Rural	0.01	0.010	0	1	1	1	11
6a	100%	Rural	0.01	0.010	0	0	1	1	2
7a	10%	Concrete (Storage)	0.909	0.100	1	5	8	16	20
1 a	90% Rural		0.01					<u> </u>	
8a	100% Rural		0.01	0.010	0	11	2	2	3
02	10% Manufacturing		0.909	0.100	0	3	5	8	10
Ja	9a 90% Rural		0.01	0.100		. •			
102	10a 80% Manufacturing		0.909	0.729	0	1	1	1	1
10a	10a 20% Rural		0.01						
11a	a 100% Rural		0.01	0.010	.0	1	1	2	2
12a	100%	Rural	0.01	0.010	0	0	11	2	2
13a	10%	Storage	0.909	0.100	1	1	3	8	13
. 10a	90%	Rural	0.01					ļ	
14a	30%	Manufacturing	0.909	0.973	1	2	3	5	7
174	70	Rural	0.01					<u> </u>	<u> </u>

>
ည်
2
ဝ္က
눕
╁
Ξ
Š
Ü
Ž
S
×
Ш
풆
Ă
C)
Н
Е
٩
Т.
\bar{c}
Ψ
α
α
α
α

Project	Project Subarea	Area	ami%	%imp Frequency	Soil Type	Length	Slope	Isohyet	Tc-calculated	Intensity	3	8	Flowrate
10061	5000	(acres)	<u>+</u>			(€	(ft/ft)	(in.)	(min.)	(in./hr)			(cfs)
500050	0	3.44	0.572	50	13	481.36	0.0233	5.2	9	2.85	6.0	6.0	6
20000	200	4 08	0 0	20	133	246.7	0.0451	5.2	5	3.1	0.91	0.9	3
290050	2 6	15.95	0.463	20	13	818.26	0.035	5.2	8	2.49	0.88	0.89	35
590050	42	1.65	0.729	20	13	574.94	0.0218	5.2	7	2.65	0.89	6.0	4
590050	1 E	0.52	0.01	50	13	118	0.1	5.2	5	3.1	0.91	0.9	1
590050	g	0.88	0.01	50	14	471.23	0.0525	5.2	7	2.65	0.7	0.7	2
590050	73	10.63	0	50	14	591.66	0.0841	5.2		2.65	0.7	0.72	20
590050	2 %	0.97	0.01	50	13	194.79	0.2116	5.2	2	3.1	0.91	0.9	က
01000	8 8	90 8	5	202	13	729.84	0.1058	5.2	9	2.85	6.0	6.0	10
05005	g 2	24.0	0 720	20	13	362.83	0.0155	5.2	9	2.85	6.0	6.0	1
500050	110	6	0.0	50	14	108.83	0.1167	5.2	2	3.1	0.74	0.74	2
500050	129	1 14	0.0	20	14	402.87	0,0242	5.2	7	2.65	0.7	0.7	2
200000	200	10.67	- -	200	4	1385.53	0.0495	5.2	14	1.91	9.0	0.63	13
500050	140	3 70	0.28	20	14	686.91	0.0518	5.2	8	2.49	0.69	0.75	7
locoosci	۲ ۲	50.0	21.5	3									

	ì
	1
<u>_</u>	ı
6	ı
×	Į
	ı
ᅐ	ı
ř	ı
HYDRO	ļ
⋝	Ì
Ί	
5-YRI	١
Σ	Į
ľγ	
ŭ	i
617	
\Rightarrow	
=	:
7	
×	:
\sim	
ш	
Ξ	:
щ	;
Δ	•
	•
V.)
Ļ	
۳	:
CODE	•
ä	5
	•
Ċ	5
7	ŕ
й	ì
	i
E CA	7
2	;
6	`
	í
_	

(in./hr) 2.33 2.73 2.73 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.89 2.73 2.90 2.90 2.19 2.19 2.19 2.10 2.			ا		T +	T + 1	ř	204011010	Interior	Č	Č	Flowrate
(in./hr) 2.33 0.87 0.89 2.73 0.89 0.89 2.19 0.84 0.88 2.73 0.89 0.89 0.89 2.73 0.89 0.68 0.68 2.19 0.65 0.89 0.89 2.73 0.89 0.89 0.89 2.73 0.89 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 2.73 0.87 0.87 0.87	Project Subarea Area %imp Frequency Soil Type Length Slope Isonyet	Frequency Soil Type Length Slope	Soil Type Length Slope	Slope		sonyet		l c-calculated	illerisity	3	3	(ofo)
7 2.33 0.87 0.89 5 2.73 0.89 0.89 6.89 8 2.19 0.84 0.86 6.89 7 2.33 0.68 0.68 0.68 8 2.19 0.65 0.68 0.68 5 2.73 0.89 0.89 0.89 6 2.5 0.89 0.89 0.89 6 2.5 0.88 0.89 0.89 8 2.19 0.65 0.65 0.65 8 2.19 0.65 0.65 0.65 17 1.53 0.48 0.52 9 2.07 0.64 0.71	(acres) (#//t) (in.)	(#/#t)	(#/#t)	(#/#t)		(in		(min.)	(in./hr)			(CIS)
5 2.73 0.89 0.89 9 2.07 0.82 0.86 2 8 2.19 0.84 0.88 0.89 7 2.33 0.68 0.68 8 2.19 0.65 0.68 5 2.73 0.89 0.89 6 2.5 0.88 0.89 6 2.5 0.88 0.89 7 2.73 0.71 0.71 8 2.19 0.65 0.65 17 1.53 0.48 0.52 17 1.53 0.64 0.71	0.572 25 1 13 481.36 0.0233	25 13 481.36 0.0233	481.36 0.0233	0.0233	_	4	4.57	7	2.33	0.87	0.89	\
9 2.07 0.82 0.86 2 8 2.19 0.84 0.88 6 7 2.33 0.68 0.68 8 2.19 0.65 0.68 5 2.73 0.89 0.89 6 2.5 0.88 0.89 6 2.5 0.88 0.89 7 2.73 0.71 0.71 8 2.19 0.65 0.65 17 1.53 0.48 0.52 9 2.07 0.64 0.71	0.01 25 13 246.7 0.0451	25 13 246.7 0.0451	246,7 0.0451	0.0451		4	4.57	5	2.73	0.89	0.89	3
8 2.19 0.84 0.88 5 2.73 0.89 0.89 7 2.33 0.68 0.68 8 2.19 0.65 0.68 7 2.33 0.87 0.89 6 2.5 0.88 0.89 6 2.5 0.88 0.89 8 2.19 0.65 0.65 17 1.53 0.48 0.52 9 2.07 0.64 0.71	0.463 25 13 818.26 0.035	25 13 818.26 0.035	818.26 0.035	0.035		4	4.57	6	2.07	0.82	0.86	28
5 2.73 0.89 0.89 7 2.33 0.68 0.68 8 2.19 0.65 0.68 7 2.33 0.87 0.89 6 2.5 0.88 0.87 8 2.73 0.71 0.71 8 2.19 0.65 0.65 17 1.53 0.48 0.52 9 2.07 0.64 0.71	0 720 25 13 574.94 0.0218	25 13 574.94 0.0218	574.94 0.0218	0.0218	L	4	4.57	8	2.19	0.84	0.88	က
7 2.33 0.68 0.68 8 2.19 0.65 0.68 5 2.73 0.89 0.89 6 2.5 0.88 0.89 6 2.5 0.88 0.89 8 2.73 0.71 0.71 17 1.53 0.48 0.52 9 2.07 0.64 0.71	0.01 25 13 118 0.1	25 13 118 0.1	118 0.1	0.1	L		4.57	5	2.73	0.89	0.89	
8 2.19 0.65 0.68 5 2.73 0.89 0.89 7 2.33 0.87 0.87 6 2.5 0.88 0.89 5 2.73 0.71 0.71 8 2.19 0.65 0.65 17 1.53 0.48 0.52 9 2.07 0.64 0.71	0.01 25 14 471.23 0.0525	25 14 471.23 0.0525	471.23 0.0525	0.0525	-		4.57	7	2.33	0.68	0.68	-
5 2.73 0.89 7 2.33 0.87 6 2.5 0.88 5 2.73 0.71 8 2.19 0.65 17 1.53 0.48 9 2.07 0.64	0.1 25 14 591.66 0.0841	25 14 591.66 0.0841	591.66 0.0841	0.0841	$oxed{\perp}$		4.57	8	2.19	0.65	0.68	16
7 2.33 0.87 6 2.5 0.88 5 2.73 0.71 8 2.19 0.65 17 1.53 0.48 9 2.07 0.64	0.01 25 13 194.79	25 13 194 79	194 79	H	0.2116		4.57	5	2.73	0.89	0.89	2
6 2.5 0.88 5 2.73 0.71 8 2.19 0.65 17 1.53 0.48 9 2.07 0.64	0.01	25 13 720.84	720 R4	-	0.1058		4 57	7	2.33	0.87	0.87	8
5 2.73 0.71 8 2.19 0.65 17 1.53 0.48 9 2.07 0.64	0.1 C2 0.000	200000000000000000000000000000000000000	00000	0.00			72 /	y	2.5	0.88	0.89	-
5 2.73 0.71 8 2.19 0.65 17 1.53 0.48 9 2.07 0.64	20.0	25 13 302.00 0.0133	302.03	20.0	+		5			1	ř	Ç
8 2.19 0.65 17 1.53 0.48 9 2.07 0.64	0.1167	25 14 108.83 0.1167	108.83 0.1167	0.1167	_	•	4.57	2	2.73	0./1	.,,	7
17 1.53 0.48 9 2.07 0.64	0.01 25 14 402.87 0.0242	25 14 402.87 0.0242	0.0242	0.0242			4.57	8	2.19	0.65	0.65	2
9 2.07 0.64	2000 0 22 200	30000 01 1000	1000 00 000	2000	-		7 57	17	1 53	0.48	0.52	ω
9 2.07 0.64	10.67 0.1 25 14 1385.53 0.0489	25 14 1385.53	1385.53	4	0.0493		4.07		3		1	
	3 59 0.28 25 14 686.91 0.0518	25 14 686.91	686.91		0.0518		4.57	6	2.07	0.64	0 / 1	C

	ı
_	ļ
'n	1
ŏ	ı
ᅥ	ı
ğ	ı
9	
Ī	
IO-YR HYDI	
召	
<u>~</u>	
ত্র	
É	
<u>∞</u>	
K EXISTIN	
$\overline{\mathbf{x}}$	
9	
2	
ഗ	
Ē	
Š	
H SP(
픗	
ĕ	
BEA(
G BEA	
NG BEA	
I ONG BEAC	
I ONG BEA	i () ()
I ONG BEA	
I ONG BEA	
I ONG BEA	

o o	ſ	一	$\overline{}$		_	-7	1		_	_	Τ	1	1			
Flowrate	(cts)	2	2	18	2	-	-	8	2	2	,	-	-	-	3	3
පි		0.82	0.85	0.77	0.84	0.85	0.48	0.52	0.85	0.73		0.87	0.66	0.48	0.3	0.59
ਟੋ		0.71	0.85	0.65	0.69	0.85	0.48	0.48	0.85	0.71		0.78	99.0	0.48	0.23	0.47
Intensity	(in./hr)	1.68	2.21	1.47	1.6	2.21	1.53	1.53	2.21	1 68	3	1.89	2.21	1.53	0.97	1.47
Tc-calculated	(min.)	6	2	12	10	5	11	11	ī.	٥	2	7	5	11	29	12
Isohyet	(in.)	3.71	3.71	3.71	3.71	3.71	3.71	3.71	3.71	271	- /:0	3.71	3.71	3.71	3.71	3.71
Slope	(ft/ft)	0.0233	0.0451	0.035	0.0218	0.1	0.0525	0.0841	02116	0.70	0.1030	0.0155	0.1167	0.0242	0.0495	0.0518
Length	Œ	481.36	246.7	818.26	574.94	118	471.23	591.66	194 79		129.84	362.83	108.83	402.87	1385.53	686.91
Soil Type		13	13	13	13	13	14	14	12		5	13	14	4	14	14
Frequency So	•	Ç	0	9	20	9	2	10	2 5	2 9	חר	10	10	2	2 0	9
%imp F	•	0.572	100	0.463	0.729	0.01	0.01	-	5 6	5 6	0.1	0.729	500	500		0.28
Area	(acres)	3 44	g	45.05	1.65	0.52	0.88	10.63	20.50	0.37	4.06	0.47	0 91	1 14	10.67	3.59
Project Subarea		-	2 6	3 8	64	2 62	2 6	72	, s	g	go	103			100	149
Project		500050	200050	590050	50000	20050	50050	5000E0	020001	nennae	590050	590050	500050	00000	00000	590050

Droion	Project Subarea	Area	%imp	%imp Frequency	cv Soil Type	Lenath	Slope	Isohyet	Tc-calculated	Intensity	సె	පී	Flowrate
	no mono	(acres)					(#/#)	(ii)	(min.)	(in./hr)		i	(cfs)
590050	12	3.44	0.572	2	13	481.36	0.0233	2.01	15	0.72	0.33	99.0	2
590050	2a	1.08	0.01	2	13	246.7	0.0451	2.01	13	0.77	0.36	0.37	0
590050		15.95	0.463	2	13	818.26	0.035	2.01	23	0.59	0.21	0.53	ಬ
590050	4a	1.65	0.729	2	13	574.94	0.0218	2.01	16	69.0	0.31	0.74	-
590050	5a	0.52	0.01	2	13	118	0.1	2.01	6	1.1	0.53	0.53	0
590050		0.88	0.01	2	4-	471.23	0.0525	2.01	30	0.52	0.1	0,11	٥
590050	7a	10.63	0.1	2	14	591.66	0.0841	2.01	30	0.52	0.1	0.18	_
590050	L	0.97	0.01	2	13	194.79	0.2116	2.01	7	1.02	0.5	0.5	0
590050	\perp	4.06	0.1	2	13	729.84	0.1058	2.01	30	0.52	0.12	0.2	0
590050		0.47	0.729	2	13	362.83	0.0155	2.01	12	0.79	0.37	0.76	0
590050		0.91	0.01	2	14	108.83	0.1167	2.01	15	0.72	0.1	0.11	0
590050		1.14	0.01	2	14	402.87	0.0242	2.01	30	0.52	0.1	0.11	0
590050		10.67	0.1	2	14	1385.53	0.0495	2.01	30	0.52	0.1	0.18	-
590050	14a	3.59	0.28	2	14	686.91	0.0518	2.01	27	0.54	0.1	0.32	-

APPENDIX B

PROPOSED HYDROLOGY CALCULATIONS

* Q2 (CFS)	5	4	Ø	4	4	5	4	6	2	4	9
* 05 (CFS)	8	2	4	9	5	8	រភ	13	ဗ	9	6
Q10 (CFS)	6	9	ß	7	9	Ø.	9	17	က	9	6
025 (CFS)	11	8	ပ	თ	80	12	8	20	4	80	12
Q50 (CFS)	13	6	9	10	6	13	6	23	2	10	15
CD	0.88	0.90	0.89	0.00	0:30	0:00	0.00	0:00	0.71	0.71	0.66
co	0.88	0.91	0.85	0.90	0.91	06.0	0.91	0.89	69.0	0.70	0.66
I50 IN/HR	2.51	3.11	2.25	2.88	3.10	2.85	3.14	2.64	2.49	2.64	2.24
50 YR TC	8	5	10	ဖ	D	9	'n	7	8	7	10
SLOPE	.020	.027	-00.	.024	.027	.023	.029	760.	.042	090	.028
EV D/S ELEV	87	85	93	84	85	84	84	83	45	95	45
U/S ELEV	100	95	95	95	95	38	96	105	70	125	99
L (FT)	640	370	560	460	370	470	380	900	009	500	760
SOIL	13	13	. 13	13	13	13	13	13	14	41	14
COMPOS %	0.10	0.10	0.73	0.10	0.10	0.46	0.10	0.85	0.10	0.06	0.01
AREA (AC)	6.08	3.23	2.86	3.42	272	5.14	3.37	8.70	2.82	5.23	9.50
SUB	T.	2A	3A	4A	5A	¥9	*	₩8	¥6	10A	11A

Note: Q5 and Q2 discharge determined by factors provided by LACDPW

-19-2004

SITE LICENSEE: PBS&J

PAGE 1 PROG FO601A

LOS ANGELES COUNTY FLOOD CONTROL DISTRICT MODIFIED RATIONAL METHOD HYDROLOGY

LONG F	BEACH	SPORTS PA	RK - 50-YEAR SUBAREA	DISCHARG	ES TALL TOTAL	EY 3/1: CONV	9/04 CONV	CONV	CONV	CONV	CONTROL	SOIL		STORM	DAY 4 PCT
LOCAT	ON	AREA	Q	AREA	Q	TYPE	LNGTH	SLOPE	SIZE	z	Q	NAME	TC	ZONE	IMPV
59	1A	. 6.	13.	6.	13.	0	0.	0.00000	0.00	0.00	0.	13	8	A26	0.10
59	2A	3.	9	.9.	22.	0	0.	0.00000	0.00	0.00	0.	13	5	A26	0.10
59	за	3.	6.	12.	28.	0	0.	0.00000	0.00	0.00	0	13	10	A26	0.73
59	4A	4.	10.	16.	39.	0	0.	0.00000	0.00	0.00	0.	13	6	A26	0.10
. 59	5A	3.	9.	19.	47.	0	0.	0.00000	0.00	0.00	0.	13	5	A26	0.10
59	6A	5.	13.	24.	61.	0	0.	0.00000	0.00	0.00	0.	13	6	A26	0.46
59	7A	3.	9.	27.	69.	0	0.	0.00000	0.00	0.00	0.	13	5	A26	0.10
59	8A	9.	23.	36.	92.	. 0	0.	0.00000	0.00	0.00	0.	13	7	A26	0.85
59	9A	3.	5.	39.	98.	o	0.	0.00000	0.00	0.00	.0.	14	8	A26	0.10
59	10A	5.	10.	44.	107.	0	0.	0.00000	0.00	0.00	0	14	7	A26	0.06
59	11A	10.	15.	54.	122.	0	0.	0.00000	0.00.	0.00	0.	14	10	A26	0.01

LOS ANGELES COUNTY FLOOD CONTROL DISTRICT MODIFIED RATIONAL METHOD HYDROLOGY

END OF CALCULATION

	END OF	CALCU	LATION						
HYDROGR	APH AT	59	11A	STOR	1 DAY 4		REDUCTION	FACTOR =	1.000
TIME	Q .	TIME	Q	TIME	Q	TIME	Q -	TIME	Q
0	0.	100	2.	200	2.	300	2.	400	.3.
500	3.	600	. 3.	700	З.	800	4.	900	4.
1000 .	5.	1050	6.	1100	8.	1110	10.	1120	12.
1130	16.	1131	16.	1132	17.	1133	17.	1134	18.
1135	19.	1136	19.	1137	20.	1138	21.	1139	22.
1140	23.	1141	24.	1142	26.	1143	28.	1144	30.
1145	34.	1146	38.	1147	41.	1148	44.	1149	61.
1150	77.	1151	93.	1152	107.	1153	122.	1154	119.
1155	110.	1156	96.	1157	80.	1158	63.	1159	47.
1160	34.	1161	25.	1162	20.	1163	15.	1164	13.
1165	12.	1166	11.	1167	10.	1168	10.	1169	9.
1170	9.	1171	. 9.	1172	8.	1173	8.	1174	8.
1175	8.	1176	8.	1177	7.	1178	7.	1179	7.
1180	7.	1181	7.	1182	7.	1183	6.	1184	6.
1185	6.	1186	6.	1187	6.	1188	6.	1189	6.
1190	6.	1191	6.	1192	6.	1193	6.	1194	6.
1195	6.	1196	5.	1197	. 5.	1198	5.	1199	5.
1200	5.	1201	5.	1202	5.	1203	5.	1204	5.
1205	5.	1206	5.	1207	5.	1208	5.	1209	5.
1210	5.	1211	5.	1212	5.	1213	5.	1214	5.
1215	5.	1216	5.	1217	4.	1218	4.	1219	4.
1220	4.	1221	4.	1222	4.	1223	4	1224	4.
1225	4.	1226	4.	1227	4.	1228	4.	1229	4.
1230	4.	1231	4.	1232	4.	1233	4.	1234	4.
1235	4.	1236	4.	1237	4.	1238	4.	1239	4.
1240	4.	1241	4.	1242	4.	1243	4.	1244	4.
1245	4.	1246	4.	1247	4.	1248	4.	1249	4.
1250	4.	1251	4.	1252	4.	1253	4.	1254	4.
1255	4.	1256	3.	1257	3.	1258	3.	1259	3.
. 1260	3.	1261	3.	1262	3.	1263	3.	1264	3.
1265	3.	1266	3.	1267	3.	1268	3.	1269	3.
1270	3.	1271	3.	1272	3.	1273	3.	1274	3.
1275	3.	1276	3.	1277	3.	1278	3.	1279	3.
1280	3.	1281	3.	1282	3.	1283	3.	1284	3.
1285	3.	1286	3.	1287	3.	1288	3.	1289	3.
1290	3.	1291	3.	1292	3.	1293	3.	1294	3.
1295	3.	1296	3.	1297	3.	1298	3.	1299.	3.
1300	3.	1310	3.	1320	3.	1330	3.	1340	3.
1350	3.	1360	2.	1370	2.	1380	2.	1390	2.
1400	2.	1420	2.	1440	2.	1460	0.	1500	0.

Total Runoff = 8.735 Acre-Ft.

Peak Q = 122 CFS

Time to Peak Q = 1153 Minutes

											•
$4 \mathrm{Li}$	ADEPTH.	RDT			•						
5	59	1A	LONG	3 BI	EACH SPORTS	PARK	-	50-YEAR	DISCHARGES	TALLEY R	EV 3/9/0
5	59	11A	END	OF	CALCULATIO	N					
6	59	1A	13	10	6 8A26					G1	-
6	59	2A	13	10	3 5A26						•
6	59	3 A	13	73	310A26				•		
6	59	4 A	13	10	4 6A26						
6	59	5A	13	10	3 5A26			,			
6	59	6A	13	4.6	5 6A26						
6	59	7A	13	10	3 5A26				•		
6	59	8A.	13	85	9 7A26						
6	59	9A	14	10	3 8A26						
6	59	10A	14	6	5 7A26						
6	59	11A	14	1	1010A26				•	1 2	•

LOS ANGELES COUNTY FLOOD CONTROL DISTRICT

MODIFIED RATIONAL METHOD HYDROLOGY

LONG B	EACH	SPORTS PA	RK - 25-YEAR	DISCHARG	es Tall	EY 3/19	0/04							STORM	DAY 4
		SUBAREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	CONV	CONV	CONV	CONTROL	SOIL		RAIN	PCT
LOCATI	ON	AREA	Q	AREA	Q	TYPE	LNGTH	SLOPE	SIZE	Z	Q	NAME	TC	ZONE	IMPV
59	1A	6.	11.	6.	11.	0	0	0.00000	0.00	0.00	0.	. 13	8	A23	0.10
59	2A	3.	8.	9.	19.	0	0.	0.00000	0.00	0.00	0.	13	5	A23	0.10
59	3A	3.	6.	12.	24.	. 0	0.	0.00000	0.00	0.00	0.	13	10	A23	0.73
59	4A	4.	9.	16.	33.	0	0.	0.00000	0.00	0.00	0.	13	6	A23	0.10
59	5A	3.	8.	19.	41.	0	0.	0.00000	0.00	0.00	0.	13	5	A23	0.10
59	6.A	5.	12.	24.	52.	0	0.	0.00000	0.00	0.00	0.	13	6	A23	0.46
59	7A	3.	8.	27.	60.	٥	0.	0.00000	0.00	0.00	0.	13	5 ·	A23	0.10
59	8A	9.	20.	36.	80.	0 .	0.	0.00000	0.00	0.00	0.	13	7	A23	0.85
59	9A	3.	4.	39.	85.	0	0.	0.00000	0.00	0.00	0.	14	8	A23	0.10
59	10A	5.	8.	44.	93.	0	0.	0.00000	0.00	0.00	0.	14	7	A23	0.06
59	11A		12.	54.	105.	0	0.	0.00000	0.00	0.00	0.	14	10	A23	0.01

LOS ANGELES COUNTY FLOOD CONTROL DISTRICT MODIFIED RATIONAL METHOD HYDROLOGY

777777	\sim	CALCILATION

	END OF	CALCU	LATION						
HYDROC	RAPH AT	59	11A	STORM	I DAY 4		REDUCTION	FACTOR =	1.000
TIME	Q	TIME	Q	TIME	Q	TIME	Q	TIME	Q
0	0.	100	2.	200	2.	300	2.	400	2.
500	2.	600	3.	700	3.	800	3.	900	4.
1000	4.	1050	5.	1100	7.	1110	9.	1120	10.
1130	13.	1131	13.	1132	14.	1133	14.	1134	15.
1135	16.	1136	16.	1137	17.	1138	18.	1139	18.
1140	19.	1141	20.	1142	21.	1143	22.	1144	23.
1145	26.	1146	30.	1147	33.	1148	36.	1149	51.
1150	65.	1151	79.	1152	92.	1153	105.	1154	102.
1155	94.	1156	82.	1157	67.	1158	53.	1159	39.
1160	28.	1161	21.	1162	15.	1163	12.	1164	11.
1165	10.	1166	9.	1167	9.	1168	8.	1169	8.
1170	8.	1171	8.	1172	7.	1173	7.	1174	7.
1175	7.	1176	7.	1177	6.	1178	6.	1179	б.
.1180	6.	1181	6	1182	6.	1183	6.	1184	6.
1185	6.	1186	5.	1187	5.	1188	5.	1189	5.
1190	5.	1191	5.	1192	5.	1193	5.	1194	5.
1195	5.	1196	5.	1197	5.	1198	5.	1199	5.
1200	5.	1201	5.	1202	5.	1203	4.	1204	4.
1205	4.	1206	4.	1207	4.	1208	4.	1209	4.
1210	4	1211	4.	1212	4.	1213	4.	1214	4.
1215	4.	1216	4.	1217	4.	1218	4.	1219	4.
1220	4.	1221	4.	1222	4.	1223	4.	1224	4.
1225	4.	1226	4.	1227	4.	1228	4.	1229	4.
1230	4.	1231	4.	1232	4.	1233	4.	1234	4.
1235	4.	1236	'З.	1237	3.	1238	3.	1239	3.
1240	3.	1241	3	1242	3.	1243	3.	1244	3.
1245	3.	1246	3.	1247	3.	1248	3.	1249	3.
1250	3.	1251	3.	1252	3.	1253	3.	1254	3.
1255	3.	1256	3.	1257	3.	1258	3.	1259	3.
1260	3.	1261	3.	1262	3.	1263	3.		3.
1265	3.	1266	3.	1267	3.	1268	3.	1269	3.
1270	. 3.	1271	3.	1272	3.	1273	3.	1274	3.
1275	3.	1276	3.	1277	3	1278	3.	1279	3.
1280	3.	1281	3.	1282	3.	1283	. 3.	1284	3.
1285	3.	1286		1287	3.	1288	3.	1289	3.
1290	3.	1291		1292	3.	1293	3.	1294	3.
1295	3.	1296		1297	3.	1298	3.	1299	3.
1300	3.	1310	3.	1320	2.	1330		1340	2.
1350	2.	1360	2.	1370	2.	1380		1390	2.
1400	2.	1420	2.	1440	2.	1460	. 0.	1500	0.

Total Runoff = 7.552 Acre-Ft.

Peak Q =

105 CFS

Time to Peak Q =

1153 Minutes

·	5 5 6	59	1A 11A 1A	END OF 13 10	CALCULATI 6 8A23	S PARK ON	- 25	-YEAR	DISCHARGES	TALLEY G1	3/19/04
	6 6 6 6 6 6 6	59 599 599 599 559	2A 3A 4A 5A 6A 7A 8A	13 10 13 73 13 10 13 10 13 46 13 10 13 85	3 5A23 310A23 4 6A23 3 5A23 5 6A23 3 5A23 9 7A23						
	6 6 6	59 59 59	9A 10A 11A	14 10 14 6 14 1	3 8A23 5 7A23 1010A23	٠.				1 2	e e e e e e e e e e e e e e e e e e e
· .							·				
			÷								
·											
		·			3					·	

LOS ANGELES COUNTY FLOOD CONTROL DISTRICT

MODIFIED RATIONAL METHOD HYDROLOGY

LONG E	EACH	SPORTS PA	RK - 10-YEAR	DISCHARGE	S TALL	EY 3/19	/04							STORM	DAY 4
		SUBAREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	COM	CONV	CONA	CONTROL	SOIL		RAIN	PCT
LOCATI	ON	AREA	. Q	AREA	Q	TYPE	LNGTH	SLOPE	SIZE	Z	Q	NAME	TC	ZONE	IMPV
59	1A	6.	9.	6.	9.	0	0.	0.00000	0.00	0.00	0.	13	8	A19	0.10
59	2A	3.	6.	9.	14.	0	0.	0.00000	0.00	0.00	0.	13	5	A19	0.10
59	3A	3.	5.	12.	19.	0	0.	0.00000	0.00	0.00	0.	13	10	A19	0.73
59	4A	4.	7.	16.	26.	0	0.	0.00000	0.00	0.00	0.	13	6	A19	0.10
59	5A	З.	6.	19.	32.	0	0.	0.00000	0.00	0.00	0.	13	5	A19	0.10
59	6A	5.	9.	24.	41.	0	σ. `	0.00000	0.00	0.00	. 0.	13	6	A19	0.46
59	7A	3.	6.	27.	47.	0	0.	0.00000	0.00	0.00	0.	13	5	A19	0.10
59	8A	9.	17.	36.	64.	. 0	0.	0.00000	0.00	0.00	0.	13	7	A19	0.85
59	9A	3.	3.	39.	67.	0	0.	0.00000	0.00	0.00	0.	14	8	A19	0.10
59	10A	5.	6.	44.	73.	0	0.	0.00000	0.00	0.00	0.	14	7	A19	0.06
59	11A	10.	9.	54.	82.	0	0.	0.00000	0.00	0.00	0.	14	10	A19	0.01

4 LAI	EPTH.	RDT											
5	59	1A						-	10-YEAR	DISC	HARGES	TALLEY	3/19/04
5	59	11A	END			CULATIO	ON					C 1	•
6 .	59	1A	13	10		8A19			•			G1	
6	59	2A	13 13	10 73		5A19 LOA19							
6	59 59	3A 4A		10		6A19					•		
6 6	59	5A		10		5A19			•				
6	59	6A				6A19		٠				·	
6	59	7A	13			5A19							
6	59	8A				7A19							•
6	59	9A	14			8A19			2				
6	59	10A	14			7A19						1 2	
6 .	59	11A	14	1	10.	10 A 19			-			1 2	
										•			
							÷						6
											•		
											•		
					÷								•

LOS ANGELES COUNTY FLOOD CONTROL DISTRICT MODIFIED RATIONAL METHOD HYDROLOGY

OF	CALCULATION

	END OF	CALCU	LATION						•
HYDROG	RAPH AT	59	11A	STOR	M DAY 4		REDUCTION	FACTOR =	1.000
TIME	Q	TIME	Q	TIME	Q	TIME	Q	TIME	Q
.0	0.	100	2.	200	2.	300	2.	400	2.
500	2.	600	2.	700	2.	800	3.	900	3.
1000	4.	1050	4.	1100	6.	1110	7.	1120	8.
1130	9.	1131	9.	1132	10.	1133	10.	1134	11.
1135	11.	1136	12.	1137	13.	1138	13.	1139	14.
1140	14.	1141	16.	1142	16.	1143	17.	1144	18.
1145	20.	1146	21.	1147	23.	1148	24.	1149	37.
1150	49.	1151	60.	1152	71.	1153	82.	1154	80.
1155	73.	1156	63.	1157	51.	1158	40.	1159	28.
1160	20,	1161	14.	1162	11.	1163	9.	1164	9.
1165	8.	1166	8.	1167	7.	1168	7.	1169	7.
1170	6.	1171	6.	1172	6.	1173	6.	1174	6.
1175	6.	1176	5.	1177	5.	1178	5.	1179	. 5.
1180	5.	1181	5.	1182	5.	1183	5.	1184	5.
1185	5.	1186	5.	1187	5.	1188	4.	1189	4.
1190	4.	1191	4.	1192	4.	1193	4.,	1194	4.
1195	4.	1196	4.	1197	4.	1198	4.	1199	4.
1200	4.	1201	4.	1202	4.	1203	4.	1204	4.
1205	4.	1206	4.	1207	4.	1208	4.	1209	3.
1210	3.	1211	3.	1212	3.	1213	3.	1214	. 3.
1215	3.	1216	3.	1217	3.	1218	3.	1219	3.
1220	3.	1221	3.	1222	3.	1223	3.	1224	3.
1225	3.	1226	3.	1227	3.	1228	3.	1229	3.
1230	3.	1231	3.	1232	3.	1233	3.	1234	3.
1235	3.	1236	3.	1237	3.	1238	3.	1239	3.
1240	3.	1241	, 3.	1242	3.	1243	. 3.	1244	3.
1245	з.	1246	3.	1247	З.	1248	3.	1249	3.
1250	3.	1251	3.	1252	3.	1253	3.	1254	3.
1255	3.	1256	3.	1257	3.	1258	2.	1259	3.
1260	3.	1261	3.	1262	2.	1263		1264	3.
1265	3.	1266	2.	1267	2.	1268		1269	2.
1270	2.	1271	2.	1272	2.	1273		1274	2.
1275	2.	1276	2.	1277	2.	1278		1279	2.
1280	2.	1281		1282	2.	1283		1284	2.
1285	2.	1286		1287	2.	1288		1289	2.
1290	2, .	1291		1292	2.	1293		1294	2.
1295	2.	1296		1297	2.	1298		1299	2.
1300	2.	1310	2.	1320	2.	1330		1340	2.
1350	2.	1360	2.	1370	2.	1380		1390	2.
1400	2.	1420	2.	1440	2.	1460	0.	1500	- 0.

Total Runoff = 6.341 Acre-Ft.

Peak Q = 82 CFS

Time to Peak Q = 1153 Minutes

LONG BEACH SPORTS PARK DETENTION BASIN VOLUME											
ELEVATION (FT)	AREA (ACRE)	AVG AREA (ACRE)	DEPTH (FT)	VOLUME (ACRE-FT)	TOTAL VOL (ACRE-FT)						
45	0.00	0.15	1.00	0.15	0.15						
46	0.30	0.80	1.00	0.80	0.95						
47	1.30	1.90	1.00	1.90	2.85						
48	2.50	3.30	1.00	3.30	6.15						
49	4:10	5.04	1.00	5.04	11.19						
50	5.98	6.74	1.00	6.74	17.93						
51.	7.49		1.00	7.86	25.78						
52	8.22	7.86		8.29	34.07						
53	8.36	8.29	1.00	i di kengerikan kalendari. Kanasari kengerikan	42.50						
54	8.49	8.43	1.00	8.43	42.30						

YEAR	PERCENTAGE	FLOW	STORAGE
STORM		(CFS)	VOLUME
			(ACRE-FT)
50	1	620.00	36.07
1	0.4179552	259.13	15.08
2	0.4878198	302.45	17.60
5	0.5984116	371.02	21.58
10	0.698441	433.03	25.19
25	0.8567819	531.20	30.90

^{*}Percentages based on L.A. County 50 Year Flow Rate

Project No. Computed By: Date:

590050 DT 3/8/2004

	· -		SPORTS PARK ASIN VOLUME		
ELEVATION	AREA	AVG AREA	DEPTH	VOLUME	TOTAL VOL
(FT)	(ACRE)	(ACRE)	(FT)	(ACRE-FT)	(ACRE-FT)
44.5	0.076				0.000
45	0.092	0.84	0.50	0.042	
46	0.108	0.100	1.00	0.100	0.042
47	0.124	0.116	1.00	0.116	0.142
48	0.140	0.132	1.00	0.132	0.258
49	0.156	0.148	1.00	0.148	0.390
50	0.173	0.166	1.00	0.166	0.538
51	0.204	0.190	1.00	0.190	0.704
52	0.235	0.220	1.00	0.220	0.894
53	0.267	0.251	1.00	0.251	1.114
54	0.301	0.284	1.00	0.284	1.365

WATER SURFACE PROFILE - TITLE CARD LISTING

- HEADING LINE NO 1 IS -
- LONG BEACH SPORTS PARK PROJECT
- HEADING LINE NO 2 IS -
- SYSTEM '1'- 51*RCP CULVERT ACROSS DETENTION BASIN TO DESILTER
- HEADING LINE NO 3 IS -
- PRELIMINARY HYDRAULICS TALLEY 8/9/04 FILES: LBSP1/LBSP1Q

DATE: 8/9/2004 TIME: 15:20

F0515P WATER SURPACE PROFILE - CHANNEL DEFINITION LISTING

PAGE INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) DROP CHN NO OF AVE PIER HEIGHT 1 BASE TYPE PIERS WIDTH DIAMETER WIDTH CARD SECT 4.25 6.00 CD CD 1 2 0.00 10.00

WATER SURFACE PROFILE - ELEMENT CARD LISTING

ELEMENT NO	1 IS A SYSTEM OUTLET * U/S DATA STATION 100.00	INVERT SECT		W S ELEV 51.00	
ELEMENT NO	2 IS A REACH * U/S DATA STATION 790.00	INVERT SECT 48.98 1	N 0.013	·	RADIUS ANGLE ANG PT MAN H 0.00 0.00 0.00 0
ELEMENT NO	3 IS A WALL ENTRANCE U/S DATA STATION 790.00	INVERT SECT 48.98 2	FP . 0.500		
ELEMENT NO	4 IS A SYSTEM HEADWORKS U/S DATA STATION 790.0		• *	W S ELEV 0.00	

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING
** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HOWKDS, W.S.ELEV = INV + DC

PAGE LICENSEE: PBS & J

F0515P
WATER SURFACE PROFILE LISTING
LONG BEACH SPORTS PARK PROJECT
SYSTEM '1'- 51*RCP CULVERT ACROSS DETENTION BASIN TO DESILTER
PRELIMINARY HYDRAULICS TALLEY 8/9/04 FILES: LBSP1/LBSP1Q

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	· Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH	HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so.		********	*******	******	SF AVE	HF	******	NORM DEPT	H *******	******	ZR	****	****
********										-				
100.00	39.59	11.410	51.000	100.0	7.05	0.772	51.772	0.00	2.986	4.25	0.00	0.00	0	0.00
690.00	0.01361					.003508	2.42		2.144			0.00		
790.00	48.98	4.440	53,420	100.0	7.05	0.772	54.192	0.00	2.986	4.25	0.00	0.00	0	0.00
WALL ENT	RANCE						•					0.00		
790.00	48.98	5.894	54.874	100.0	1.70	0.045	54.919	0.00	1.459	6.00	10.00	0.00	.0	0.00

LONG BEACH SPORTS PARK PROJECT SYSTEM '1'- 51*RCP CULVERT ACROSS DETENTION BASIN TO DESILTER PRELIMINARY HYDRAULICS TALLEY 8/9/04 FILES: LBSP1/LBSP1Q

677.35 691.43	•								•	
677.35	•								•	
649.18 663.27	•									
621.02 635.10	<i>:</i>		-							
606.94		•								
578.78 592.86	:								•	
564.69 578.78									:	
550.61									. •	
522.45 536.53	•								-	
508.37	•								•	
494.29	:								٠.	
466.12 480.20	:									
452.04	•	÷			•					
437.96	•								•	
409.80 423.88	•	•								
395.71									-	
367.55 381.63	:					. 1				
353.47	•					. 1		•		
339.39	-								•	
311.22 325.31	:									
297.14										
283.06	:									
254.90 268.98	•								:	
240.82									•	
226.73	•									
198.57 212.65	•				•				•	
184.49									•	
170.41	•								•	
142.24 156.33	•								•	
128.16										
100.00 114.08	.I	С Н				•	E		-	
100 00						W			-	R

- NOTES

 1. GLOSSARY

 I = INVERT ELEVATION

 C = CRITICAL DEPTH

 W = WATER SURFACE ELEVATION

 H = HEIGHT OF CHANNEL

 E = ENERGY GRADE LINE

 X = CURVES CROSSING OVER

 B = BRIDGE ENTRANCE OR EXIT

 Y = WALL ENTRANCE OR EXIT

 2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

F 0 5 1 5 P

WATER SURFACE PROFILE - TITLE CARD LISTING

- HEADING LINE NO 1 IS -
- LONG BEACH SPORTS PARK PROJECT
- HEADING LINE NO 2 IS -
- SYSTEM '1'- 54"RCP CULVERT ACROSS DETENTION BASIN TO DESILTER
- HEADING LINE NO 3 IS -
- PRELIMINARY HYDRAULICS TALLEY 8/9/04 FILES: LBSP1A/LBSP1AQ

DATE: 8/ 9/2004 TIME: 15:48

F0515P WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING

PAGE

CARD CODE	SECT NO		NO OF PIERS	AVE PIER WIDTH	HEIGHT 1 DIAMETER		ZL	ZR	INV DROP	Y{1}	Y(2)	Y(3)	Y(4)	Y(5)	Y(6)	Y(7)	¥(8)	Y (9)	Y(10)
CD CD	. 1 2	4 2	0	0.00	4.50 6.00	10.00			0.00)									

LONG BEACH SPORTS PARK PROJECT SYSTEM '1'- 54*RCP CULVERT ACROSS DETENTION BASIN TO DESILTER PRELIMINARY HYDRAULICS TALLEY 8/9/04 FILES: LBSP1A/LBSP1AQ

.00	.i	. •	c.	н	•	•	•	W	E		•	•	R
.08												•	
16	. •												
4 3	•											•	
	•			•								•	
	•											•	
	•												
	•												
	•												
	•												
	Ċ												
												•	
												•	
												•	
												. •	
												•	
												•	
												•	
	•											•	
	•											•	
	•											•	
	-												
	*												
	:												
	•												
							· .						
			-										
		•									-	•	
												•	
	•											-	
	•											•	
	•											:	
	•												
	•												
	•												
	:					*							
						I		С		х	E	•	R
													_
				•			I.		¢_	W	HE		R
	•						I_		c	W	HE	•	R
							I	•	С	W	x	•	R
	•	•	•	•	· .	•	•	•	•		•	•	
										.90	53.44		98

- N O T E S

 1. GLOSSARY

 I = INVERT ELEVATION

 C = CRITICAL DEPTH

 W = WATER SURFACE ELEVATION

 H = HEIGHT OF CHANNEL

 E = EMERGY GRADE LINE

 X = CURVES CROSSING OVER

 B = BRIDGE ENTRANCE OR EXIT

 Y = WALL ENTRANCE OR EXIT

 2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

WATER SURFACE PROFILE - TITLE CARD LISTING

- HEADING LINE NO 1 IS -
- LONG BEACH SPORTS PARK PROJECT
- HEADING LINE NO 2 IS -
- SYSTEM '2'- 18' RCP CULVERT ACROSS DETENTION BASIN TO AREA 1A
- HEADING LINE NO 3 IS -

PRELIMINARY HYDRAULICS TALLEY 8/9/04 FILES: LBSP2A/LBSP2AQ

DATE: 8/ 9/2004 TIME: 16:39

F0515P WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING

INV DROP Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE CODE NO TYPE PIERS WIDTH DIAMETER WIDTH 1.50 3.00 CD CD 1 2 0.00 10.00 0.00

F 0 5 1 5 P

WATER SURFACE PROFILE - ELEMENT CARD LISTING

ELEMENT NO	1 IS A SYSTEM OUTLET * U/S DATA STATION 100.00	INVERT SECT		W S ELEV 51.20	•	
ELEMENT NO	2 IS A REACH *			•		
	U/S DATA STATION	INVERT SECT	N		RADIUS ANGLE	ang pt man h
	690.00	45.00 1	0.013		0.00 0.00	0.00 0
ELEMENT NO	3 IS A REACH *	* *				
	U/S DATA STATION	INVERT SECT	N		RADIUS ANGLE	ANG PT MAN H
	730.00	61.00 I	0.013		0.00 0.00	0.00 0
ELEMENT NO	4 IS A WALL ENTRANCE	*		4		
	U/S DATA STATION	INVERT SECT	. FP			
	730.00	61.00 2	0.500			•
ELEMENT NO	5 IS A SYSTEM HEADWORKS	*		•		. •
	U/S DATA STATION	INVERT SECT	4	W S ELEV		
	730.00	61.00 2		. 0.00		
NO NOTE EDDO	C PACOUNTERED-COMPLETATION IS	NOW REGINNING				

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING ** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = INV + DC

F0515P

WATER SURFACE PROFILE LISTING

LONG BEACH SPORTS PARK PROJECT

SYSTEM '2'- 18' RCP CULVERT ACROSS DETENTION BASIN TO AREA 1A
PRELIMINARY HYDRAULICS TALLEY 8/9/04 FILES: LBSP2A/LBSP2AQ

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so					SF AVE	HF		N	ORM DEPT		******	ZR	****	****
*******	******	********		*******	*******	*******									
100.00	40.00	11.200	51,200	9.0	5.09	0.403	51.603	0.00	1.161		1.50	0.00	0.00	0	0.00
. 590,00	0.00847					.007341	4.33			1.140			0.00		
690.00	45.00	10.531	55.531	9.0	5.09	0.403	55.934	0.00	1.161		1.50	0.00	0.00	0	0.00
18.14	0.40000					.007341	0.13			0.370			0.00		
708.14	52.26	3.415	55.670	9.0	5.09	0.403	56.073	0.00	1.161		1.50	0.00	0.00	0	0.00
HYDRAULIC	JUMP								•		•	•	0.00		
708.14	52.26	0.428	52.683	9.0	21.63	7.268	59.951	0.00	1.161		1.50	0.00	0.00	0	0.00
1.63	0.40000					.225804	0.37			0.370			0.00		
709.77	52.91	0.434	53.343	9.0	21.18	6.963	60.306	0.00	1.161		1.50	0.00	0.00	. 0	0.00
3.18	0.40000					.205351	0.65			0.370			0.00		
712.95	54.18	0.449	54.630	9.0	20.22	6.352	60.982	0.00	1.161		1.50	0.00	0.00	0	0.00
2.55	0.40000			٠.		.179792	0.46			0.370			0.00		
715.50	55.20	0.465	55.663	9.0	19.27	5.767	61.430	0.00	1.161		1,50	0.00	0.00	0	0.00
2.09	0.40000					.157436	0.33			0.370			0.00		
717.59	56.03	0.481	56.516	9.0	18.37	5.239	61.755	0.00	1.161		1.50	0.00	0.00	0	0.00
1.75	0.40000					.137858	0.24			0.370			0.00		
719.34	56.74	0.498	57.234	9.0	17.51	4.761	61.9 9 5	0.00	1.161		1.50	0.00	0.00	0	0.00
1.49	0.40000					.120812	0.18			0.370			0.00)	
720.83	57.33	0.516	57.846	9.0	16.70	4.329	62.175	0.00	1.161	•	1.50	0.00	0.00	0	0.00
1.27	0.40000					.105877	0.13			0.370			0.00)	
722.10	57.84	0.534	58.375	9.0	15.93	3.940	62.315	0.00	1,161		1.50	0,00	0.00	. 0	0.00
1.11	0.40000					.092782	0.10			0.370			0.00) .	

F0515P

WATER SURFACE PROFILE LISTING

LONG BEACH SPORTS PARK PROJECT

SYSTEM '2'- 18' RCP CULVERT ACROSS DETENTION BASIN TO AREA 1A
PRELIMINARY HYDRAULICS TALLEY 8/9/04 FILES: LBSP2A/LBSP2AQ

STATION	invert Elev	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH	·	HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so					SF AVE	HF		N	ORM DEPT	H *******	******	ZR	****	****
*******	******	********	********	********	*******	*****									
723.21	58.28	0.553	58.835	9.0	15.18	3.577	62.412	0.00	1.161	•	1,50	0.00	0.00	0	0.00
0.95	0.40000		•			.081361	0.08			0.370			0.00		
724.16	58.66	0.573	59.238	. 9.0	14.47	3.251	62.489	0.00	1.161		1.50	0.00	0.00	0	0.00
0.84	0.40000					.071390	0.06		•	0.370			0.00		
725.00	59.00	0.594	59.594	9.0	13.80	2.959	62.553	0.00	1.161		1.50	0.00	0.00	0	0.00
0.73	0.40000		_			.062676	0.05			0.370			0.00		
725.73	59.29	0.616	59.908	9.0	13.16	2.688	62.596	0.00	1.161		1.50	0.00	0.00	0	0.00
0.65	0.40000					.055023	0.04			0.370	,		0.00		
726.38	59.55	0.638	60.188	9.0	12.55	2.447	62.635	0.00	1,161		1.50	0.00			0.00
0.56	0.40000					.048323	0.03	•		0.370			0.00		
726.94	59.77	0.662	60.437	9.0	11.97	2.224	62.661	0.00	1.161		1.50	0.00			0.00
0.49	0.40000				,	.042488	0.02			0.370	7		0.00		
727.43	59.97	0.687	60.660	9.0	11.41	2.020	62.680	0.00	1.161		1.50	0.00	0.00		0.00
0.44	0.40000					037353	0.02			0.370			0.00		
727.87	60.15	0.712	60.860	9.0	10.87	1.835	62.695	0.00	1.161		1.50	0.00	0.00		0,00
0.38	0.40000					.032850	0.01			0,370			0.00		
728.25	60.30	0.739	61.040	9.0	10.37	1.669	62.709	. 0.00	1.161		1.50	0.00	0.00		0.00
0.33	0.40000					.028918	0.01			0.370			0.00		0.00
728.58	60.43	0.767	61,201	9.0	9.88	1.516	62.717	0.00	1.161		1.50	0.00	0.00		0.00
0.29	0.40000					.025481				0.370			0.00		0.00
728.87	60.55	0.797	61.346	9.0	9.42	1.379		0.00	1.161		1.50	0,00			0.00
0.25	0.40000					.022474	0.01			0.370		~	0.00	,	

LICENSEE: PBS & J PAGE

F0515P
WATER SURFACE PROFILE LISTING
LONG BEACH SPORTS PARK PROJECT
SYSTEM '2'- 18" RCP CULVERT ACROSS DETENTION EASIN TO AREA 1A
FRELIMINARY HYDRAULICS TALLEY 8/9/04 FILES: LBSP2A/LBSP2AQ

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	· Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so					SF AVE	HF		N	ORM DEPTH			ZR		
******	******	*****	****	*****	****	******	*********					******			
729.12	60.65	0.828	61.477	9.0	8.98	1.253	62.730	0.00	1.161		1.50	0.00	0.00	0	0.00
0.22	0.40000	•				.019838	0.00			0.370			0.00		
729.34	60.73	0.861	61.595	9.0	8.57	1.141	62.736	0.00	1.161		1.50	0.00	0.00	0	0.00
0.18	0.40000					.017536	0.00			0.370			0.00		
729.52	60.81	0.896	61.702	9.0	8.17	1.036	62.738	0.00	1.161	•	1.50	0.00	0.00	0	0.00
0.14	0.40000					.015523	0.00			0.370			0.00		
729.66	60.87	0.933	61.799	9.0	7.79	0.943	62.742	0.00	1.161		1.50	0.00		0	0.00
0.13	0.40000			•		.013760	0.00			0.370			0.00		
729.79	60.91	0.972	61.886	9.0	7.43	0.856	62.742	0.00	1,161		1.50	0.00	0.00	0	0.00
0.09	0.40000					.012214	0.00			0.370			0.00		
729.88	60.95	1.013	61.965	9.0	7.08	0.779	62.744	0.00	1.161	•	1.50	0.00	0.00		0.00
0.07	0.40000					.010870	0.00			0.370		•	0.00		
729.95	60.98	1.058	62.037	9.0	6.75	0.708	62.745	0.00	1.161		1.50	0.00	0.00		0.00
0.04	0.40000					.009709	0.00			0.370			0.00		
729.99	60.99	1.107	62.101	9.0	6.44	0.644	62.745	0.00	1.161		1.50	0.00			0.00
0.01	0.40000					.008699	0.00			0.370			0.00		
730.00	61.00	1.161	62.161	9.0	6.13	0.584	62.745	0.00	1.161		1.50	0.00			0.00
WALL ENT	RANCE												0.00		
730.00	61.00	2.149	63.149	9.0	0.42	0.003	63.152	0.00	0.293		3.00	10.00	0.00	· . 0	0.00

LONG BEACH SPORTS PARK PROJECT SYSTEM '2'- 18' RCP CULVERT ACROSS DETENTION BASIN TO AREA 1A PRELIMINARY HYDRAULICS TALLEY 8/9/04 FILES: LBSP2A/LBSP2AQ

0	.i	СН	•			₩∙E	:					•	
0	٠						•						
0												i.	
0	• .							-					
0													
0												•	٠.
Ō													•
0													
0												•	•
0						•		4					
0													
0	٠									•			
0	•												
0	•												
0	•												•
0	•												٠
0	•												٠
0													٠
0													٠
0													•
0													•
0										•			:
30	-												
00	-												
00	٠												
10	•												•
00 .	-												
00	•												
00	:												-
00													-
00													•
00									*				:
00	•												
00	•												
00	•							•					
00 00	•												
00	•						•						•
00													•
00													.•
00													•
00													•
00													
00													
00	•										•		
00	٠												
00	•												
00 00	•												
00		•											
00	• :										-		٠
00						•							٠
00	-												•
00						•							٠
00													•
00								WE					Ċ
00				I CH				n e					
00	•						1 сн	WE					
00	•						IM CH			E			
00	-						IW			E			
.00	-							•					
	•			•	•	-		•					
				44.80	47.20	49.60	52.00	54.40	56.80	59.20	61.60		64

N O T E S

1. GLOSSARY

I = INVERT ELEVATION

C = CRITICAL DEPTH

W = WAITER SUFFACE ELEVATION

H = HEIGHT OF CHANNEL

E = ENERGY GRADE LINE

X = CURVES CROSSING OVER

B = BRIDGE ENTRANCE OR EXIT

Y = WALL ENTRANCE OR EXIT

2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

APPENDIX C

REFERENCE MATERIALS

April 30, 1992

TO:

Richard J. Smith

Design Division

FROM:

Donald F. Nichols

Hydraulic/Water Conservation Division

LOS ANGELES RIVER WALNUT SPRING DRAIN AND DETENTION BASIN - HYDROLOGY FILE NO. 676.41

This confirms the discussion with Ray Hashima and Bob Woo by the undersigned on April 16, 1992 in response to your request. The subject project entails a drain and a detention basin. It will be constructed as part of the City of Long Beach Redevelopment Plan of the area. The Basin and Project Drain 5109 will provide outlet to runoff from design level storms in the Walnut Spring Watershed. This transmittal ammends our previous report dated July 8, 1986, File No. 676.41

Attachments

- A. Hydrologic map showing proposed and existing drain alignments and drainage area boundaries.
- B. Hydrologic data sheets listing subarea sizes and subarea and reach peak flow rates.
- C. Supporting information including design parameters, scaledown factor, flooding analysis, mandatory flood insurance require nents, and references.

Summary of Findings

- A. The proposed alignment shown in Attachment A represents the best hydrologic solution for the flooding problem as we uncerstand it and may not necessarily correspond with the exact alignment proposed in the request.
- B. The peak inflow rate for the proposed hasin is 620 cfs.
- C. There is no scale-down factor.
- D. Construction of the defention basin for 36.07 acre-feet volume as proposed will provide protection from a 50-year frequency rainfall.

Quad : Long Beach (1-H/ 5)

Sheet lof1

= 1000

50-Yr Frequency Runtall

ATTACHMENT B HYDROLOGIC DATA

Walnut S

Walnut Spring Drain

yance Types

. Natural Mountain

4. Pipe

. Natural Valley

5. Rectangular Channel

Street 6. Trapezoidal Channel

50-Year Frequency Rainfall

Reach	Prelimin	ary Convey	ance	÷	Area (a	cres)	Peak C	(cfs)
or	Length (feet)	Туре	Size (feet)	Slope	Subarea	Total	Subarea ¹	Reach ²
INE A								
1A					207		460	
A - 2A		-	-			207		460
2A					17		40	· · · · · · · · · · · · · · · · · · ·
A - 3A	1200	4	6.00'	0.02080		224		500
3A					32		110	
3A - 4A	450	4	8.00'	0.00330		256		560
4A				·	28		75	
A-Split		_	-	-		282		620 ³
Split-5A						237		520
5A					6		25	
-Bsn(Tot.)						245		530
plit-5109								100
·]	
		1						
		 			1			

flow rate from the subarea that can be proportioned (Q/A) for catch basin design within the subarea the Department's "Design Manual--Hydraulic").

eak flow rate at the top of the reich for design of the conveyance.

ne peak inflow hydrograph is spliton a truncation basis whereby all flows up to 100 cfs continue to flow the drain and the remaining flow will be transferred for storage in the basin.

Los Angeles County Department of Public W as

Sheet 1 of 1

ATTACHMENT C

SUPPORTING INFORMATION

Project:

Walnut Spring Drain

Design Parameters

This hydrology meets the policies and procedures established in the Department of Public Works hydrology manual dated December 1991.

The total watershed size is 290 acres. The assumed ultimate development in the watershed is 93 % commercial, 7 % cemetery or other.

All reported flow rates are adequately collected runoff from a 50-year frequency rainfall.

Adequate collection assumes that the drainage system collects all incoming surface flows and that runoff will flow out of its appropriate subarea only at the collection point.

Scale-down Factor

The outlet drain flows into Project Drain No. 5109, which has capacity to receive 100 cfs.

Flood Insurance

The watershed is not in a mandatory flood insurance zone.

FULL SIZE EXISTING HYDROLOGY EXHIBIT IS

AVAILABLE FOR REVIEW AT THE CITY OF LONG BEACH

COMMUNITY DEVELOPMENT DEPARTMENT

FULL SIZE PROPOSED ON-SITE HYDROLOGY EXHIBIT IS

AVAILABLE FOR REVIEW AT THE CITY OF LONG BEACH

COMMUNITY DEVELOPMENT DEPARTMENT